3.529 \(\int \frac{A+B \tan (c+d x)}{\cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=319 \[ \frac{5 (-5 B+i A)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (\cot (c+d x)+i)}-\frac{\left (\frac{1}{32}-\frac{i}{32}\right ) ((7+2 i) A+(2+23 i) B) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a^2 d}+\frac{\left (\frac{1}{32}-\frac{i}{32}\right ) ((7+2 i) A+(2+23 i) B) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a^2 d}-\frac{\left (\frac{1}{16}-\frac{i}{16}\right ) ((2+7 i) A-(23+2 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a^2 d}+\frac{((9+5 i) A-(25-21 i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^2 d}+\frac{-B+i A}{4 d \sqrt{\cot (c+d x)} (a \cot (c+d x)+i a)^2} \]

[Out]

((-1/16 + I/16)*((2 + 7*I)*A - (23 + 2*I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a^2*d) + (((9 +
5*I)*A - (25 - 21*I)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(16*Sqrt[2]*a^2*d) + (5*(I*A - 5*B))/(8*a^2*d*
Sqrt[Cot[c + d*x]]) + (3*A + (7*I)*B)/(8*a^2*d*Sqrt[Cot[c + d*x]]*(I + Cot[c + d*x])) + (I*A - B)/(4*d*Sqrt[Co
t[c + d*x]]*(I*a + a*Cot[c + d*x])^2) - ((1/32 - I/32)*((7 + 2*I)*A + (2 + 23*I)*B)*Log[1 - Sqrt[2]*Sqrt[Cot[c
 + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^2*d) + ((1/32 - I/32)*((7 + 2*I)*A + (2 + 23*I)*B)*Log[1 + Sqrt[2]*Sqrt[C
ot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.680288, antiderivative size = 319, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 10, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {3581, 3596, 3529, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{5 (-5 B+i A)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (\cot (c+d x)+i)}-\frac{\left (\frac{1}{32}-\frac{i}{32}\right ) ((7+2 i) A+(2+23 i) B) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a^2 d}+\frac{\left (\frac{1}{32}-\frac{i}{32}\right ) ((7+2 i) A+(2+23 i) B) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a^2 d}-\frac{\left (\frac{1}{16}-\frac{i}{16}\right ) ((2+7 i) A-(23+2 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a^2 d}+\frac{((9+5 i) A-(25-21 i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^2 d}+\frac{-B+i A}{4 d \sqrt{\cot (c+d x)} (a \cot (c+d x)+i a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

((-1/16 + I/16)*((2 + 7*I)*A - (23 + 2*I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a^2*d) + (((9 +
5*I)*A - (25 - 21*I)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(16*Sqrt[2]*a^2*d) + (5*(I*A - 5*B))/(8*a^2*d*
Sqrt[Cot[c + d*x]]) + (3*A + (7*I)*B)/(8*a^2*d*Sqrt[Cot[c + d*x]]*(I + Cot[c + d*x])) + (I*A - B)/(4*d*Sqrt[Co
t[c + d*x]]*(I*a + a*Cot[c + d*x])^2) - ((1/32 - I/32)*((7 + 2*I)*A + (2 + 23*I)*B)*Log[1 - Sqrt[2]*Sqrt[Cot[c
 + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^2*d) + ((1/32 - I/32)*((7 + 2*I)*A + (2 + 23*I)*B)*Log[1 + Sqrt[2]*Sqrt[C
ot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^2*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^2} \, dx &=\int \frac{B+A \cot (c+d x)}{\cot ^{\frac{3}{2}}(c+d x) (i a+a \cot (c+d x))^2} \, dx\\ &=\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{\int \frac{-\frac{1}{2} a (A+9 i B)-\frac{5}{2} a (i A-B) \cot (c+d x)}{\cot ^{\frac{3}{2}}(c+d x) (i a+a \cot (c+d x))} \, dx}{4 a^2}\\ &=\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{\int \frac{\frac{5}{2} a^2 (i A-5 B)-\frac{3}{2} a^2 (3 A+7 i B) \cot (c+d x)}{\cot ^{\frac{3}{2}}(c+d x)} \, dx}{8 a^4}\\ &=\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{\int \frac{-\frac{3}{2} a^2 (3 A+7 i B)-\frac{5}{2} a^2 (i A-5 B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx}{8 a^4}\\ &=\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{\operatorname{Subst}\left (\int \frac{\frac{3}{2} a^2 (3 A+7 i B)+\frac{5}{2} a^2 (i A-5 B) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{4 a^4 d}\\ &=\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{((9+5 i) A-(25-21 i) B) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 a^2 d}+\frac{((9-5 i) A+(25+21 i) B) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 a^2 d}\\ &=\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}+\frac{((9+5 i) A-(25-21 i) B) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{32 a^2 d}+\frac{((9+5 i) A-(25-21 i) B) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{32 a^2 d}-\frac{((9-5 i) A+(25+21 i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{32 \sqrt{2} a^2 d}-\frac{((9-5 i) A+(25+21 i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{32 \sqrt{2} a^2 d}\\ &=\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}-\frac{((9-5 i) A+(25+21 i) B) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{32 \sqrt{2} a^2 d}+\frac{((9-5 i) A+(25+21 i) B) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{32 \sqrt{2} a^2 d}+\frac{((9+5 i) A-(25-21 i) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^2 d}-\frac{((9+5 i) A-(25-21 i) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^2 d}\\ &=-\frac{((9+5 i) A-(25-21 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^2 d}+\frac{((9+5 i) A-(25-21 i) B) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^2 d}+\frac{5 (i A-5 B)}{8 a^2 d \sqrt{\cot (c+d x)}}+\frac{3 A+7 i B}{8 a^2 d \sqrt{\cot (c+d x)} (i+\cot (c+d x))}+\frac{i A-B}{4 d \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}-\frac{((9-5 i) A+(25+21 i) B) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{32 \sqrt{2} a^2 d}+\frac{((9-5 i) A+(25+21 i) B) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{32 \sqrt{2} a^2 d}\\ \end{align*}

Mathematica [A]  time = 2.75635, size = 249, normalized size = 0.78 \[ \frac{\sec (c+d x) (\cos (d x)+i \sin (d x))^2 (A+B \tan (c+d x)) \left (2 (\sin (2 d x)+i \cos (2 d x)) ((-43 B+7 i A) \sin (2 (c+d x))+(5 A+41 i B) \cos (2 (c+d x))+5 A+9 i B)+(-\sin (2 c)+i \cos (2 c)) \sqrt{\sin (2 (c+d x))} \csc (c+d x) \left (((5-9 i) A+(21+25 i) B) \sin ^{-1}(\cos (c+d x)-\sin (c+d x))-(1+i) ((7+2 i) A+(2+23 i) B) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )\right )\right )}{32 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^2 (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(Sec[c + d*x]*(Cos[d*x] + I*Sin[d*x])^2*(Csc[c + d*x]*(((5 - 9*I)*A + (21 + 25*I)*B)*ArcSin[Cos[c + d*x] - Sin
[c + d*x]] - (1 + I)*((7 + 2*I)*A + (2 + 23*I)*B)*Log[Cos[c + d*x] + Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]])*(
I*Cos[2*c] - Sin[2*c])*Sqrt[Sin[2*(c + d*x)]] + 2*(I*Cos[2*d*x] + Sin[2*d*x])*(5*A + (9*I)*B + (5*A + (41*I)*B
)*Cos[2*(c + d*x)] + ((7*I)*A - 43*B)*Sin[2*(c + d*x)]))*(A + B*Tan[c + d*x]))/(32*d*Sqrt[Cot[c + d*x]]*(A*Cos
[c + d*x] + B*Sin[c + d*x])*(a + I*a*Tan[c + d*x])^2)

________________________________________________________________________________________

Maple [C]  time = 0.497, size = 5063, normalized size = 15.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.67515, size = 2032, normalized size = 6.37 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/32*(2*(a^2*d*e^(6*I*d*x + 6*I*c) + a^2*d*e^(4*I*d*x + 4*I*c))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^4*d^2))*log(1/
4*((8*I*a^2*d*e^(2*I*d*x + 2*I*c) - 8*I*a^2*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqr
t((I*A^2 + 2*A*B - I*B^2)/(a^4*d^2)) - 8*(A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 2*(a
^2*d*e^(6*I*d*x + 6*I*c) + a^2*d*e^(4*I*d*x + 4*I*c))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^4*d^2))*log(1/4*((-8*I*a
^2*d*e^(2*I*d*x + 2*I*c) + 8*I*a^2*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((I*A^2
+ 2*A*B - I*B^2)/(a^4*d^2)) - 8*(A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) + (a^2*d*e^(6*I
*d*x + 6*I*c) + a^2*d*e^(4*I*d*x + 4*I*c))*sqrt((-49*I*A^2 + 322*A*B + 529*I*B^2)/(a^4*d^2))*log(1/8*((a^2*d*e
^(2*I*d*x + 2*I*c) - a^2*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((-49*I*A^2 + 322*
A*B + 529*I*B^2)/(a^4*d^2)) + 7*I*A - 23*B)*e^(-2*I*d*x - 2*I*c)/(a^2*d)) - (a^2*d*e^(6*I*d*x + 6*I*c) + a^2*d
*e^(4*I*d*x + 4*I*c))*sqrt((-49*I*A^2 + 322*A*B + 529*I*B^2)/(a^4*d^2))*log(-1/8*((a^2*d*e^(2*I*d*x + 2*I*c) -
 a^2*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((-49*I*A^2 + 322*A*B + 529*I*B^2)/(a^
4*d^2)) - 7*I*A + 23*B)*e^(-2*I*d*x - 2*I*c)/(a^2*d)) + 2*(6*(A + 7*I*B)*e^(6*I*d*x + 6*I*c) - (A + 33*I*B)*e^
(4*I*d*x + 4*I*c) - 2*(3*A + 5*I*B)*e^(2*I*d*x + 2*I*c) + A + I*B)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*
x + 2*I*c) - 1)))/(a^2*d*e^(6*I*d*x + 6*I*c) + a^2*d*e^(4*I*d*x + 4*I*c))

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(5/2)), x)